Skip to contents

Data

Datasets included with the package

lewbel_sim
Simulated Lewbel Test Data

Data Generation

Functions for generating data that satisfies Lewbel’s assumptions

generate_lewbel_data()
Generate Data for Lewbel (2012) Triangular Model
generate_hetid_test_data()
Generate consistent test data for all comparisons
verify_lewbel_assumptions()
Verify Lewbel's Key Identifying Assumptions
generate_seed_matrix()
Generate Seed Matrix for Reproducible Parallel Simulations
generate_all_seeds()
Generate All Seeds for Lewbel Simulation

Estimation

Core estimation functions for the Lewbel method

calculate_lewbel_bounds()
Calculate Set Identification Bounds for Lewbel Estimator
run_single_lewbel_simulation()
Run Single Lewbel Simulation

GMM (Generalized Method of Moments)

GMM estimation for heteroskedasticity-based identification methods

lewbel_gmm()
Estimate Lewbel Model using GMM
lewbel_triangular_moments()
Define GMM Moment Conditions for Lewbel Triangular System
lewbel_simultaneous_moments()
Define GMM Moment Conditions for Lewbel Simultaneous System
rigobon_gmm()
GMM Estimation for Rigobon (2003) Regime-Based Identification
rigobon_moment_conditions()
Define GMM Moment Conditions for Rigobon Triangular System
prono_gmm()
GMM Estimation for Prono (2014) GARCH-Based Identification
prono_triangular_moments()
Define GMM Moment Conditions for Prono Triangular System
compare_gmm_2sls()
Compare GMM and 2SLS Estimates for Lewbel Model
print(<lewbel_gmm>)
Print Method for Lewbel GMM
summary(<lewbel_gmm>)
Summary Method for Lewbel GMM

Monte Carlo Simulations

Functions for running Monte Carlo experiments

run_lewbel_monte_carlo()
Run Complete Lewbel (2012) Monte Carlo Simulation
run_lewbel_demo()
Run Quick Lewbel Monte Carlo Demo
run_main_simulation()
Run Main Lewbel Monte Carlo Simulation
run_sample_size_analysis()
Run Sample Size Analysis
run_sensitivity_analysis()
Run Sensitivity Analysis
run_bootstrap_demonstration()
Run Bootstrap Demonstration
create_default_config()
Create Default Configuration for Lewbel Monte Carlo Simulations

Rigobon (2003) Method

Functions for regime-based heteroskedasticity identification

generate_rigobon_data()
Generate Data for Rigobon (2003) Regime-Based Model
run_rigobon_analysis()
Rigobon (2003) Regime-Based Heteroskedasticity Identification
run_rigobon_estimation()
Run Rigobon (2003) Regime-Based Estimation
run_rigobon_demo()
Run Rigobon (2003) Identification Demo
validate_rigobon_assumptions()
Validate Rigobon Assumptions
compare_rigobon_methods()
Compare Rigobon with Other Methods

Prono (2014) Method

Functions for GARCH-based heteroskedasticity identification

generate_prono_data()
Prono (2014) Heteroskedasticity-Based Identification with GARCH
run_single_prono_simulation()
Run single Prono simulation with GARCH-based instruments
run_prono_monte_carlo()
Run Prono Monte Carlo simulation
run_prono_demo()
Run Prono demonstration
create_prono_config()
Create default configuration for Prono simulations
fit_diagonal_garch_prono()
Diagonal GARCH Implementation for Prono (2014) Method
prono_diagonal_garch()
Run Prono Estimation with Diagonal GARCH
replicate_prono_table2()
Replicate Prono's Table II Results

Klein & Vella (2010) Method

Functions for semiparametric control function approach

generate_klein_vella_data()
Generate data following Klein & Vella (2010) assumptions
verify_klein_vella_assumptions()
Verify Klein & Vella assumptions in data
create_klein_vella_config()
Create configuration for Klein & Vella data generation
klein_vella_parametric()
Parametric Klein & Vella estimation
klein_vella_semiparametric()
Semiparametric Klein & Vella estimation
run_klein_vella_demo()
Run Klein & Vella demonstration
run_klein_vella_monte_carlo()
Run Klein & Vella Monte Carlo simulation
compare_klein_vella_methods()
Compare Klein & Vella methods
summary(<klein_vella_fit>)
Summary method for Klein & Vella estimation results
print(<klein_vella_fit>)
Print method for Klein & Vella estimation results
print(<klein_vella_semipar>)
Print method for semiparametric Klein & Vella results
print(<summary.klein_vella_fit>)
Print summary of Klein & Vella estimation results

Analysis

Functions for analyzing simulation results

analyze_main_results()
Analyze Main Simulation Results
analyze_sample_size_results()
Analyze Sample Size Results
analyze_sensitivity_results()
Analyze Sensitivity Results
analyze_bootstrap_results()
Analyze Bootstrap Results
print_simulation_summary()
Print Simulation Summary

Visualization

Functions for creating plots and visualizations

generate_all_plots()
Generate All Simulation Plots
plot_estimator_distributions()
Create Distribution Plot of Estimators
plot_first_stage_f_dist()
Create First-Stage F Distribution Plot
plot_sample_size_consistency()
Create Sample Size Consistency Plot
plot_het_sensitivity()
Create Heteroscedasticity Sensitivity Plot
plot_bootstrap_ci()
Create Bootstrap Confidence Intervals Plot

Degrees of Freedom

Functions for handling degrees of freedom adjustments

adjust_se_for_df()
Adjust standard errors for degrees of freedom
get_critical_value()
Get critical value for confidence intervals
extract_se_lm()
Extract adjusted standard errors from lm model
extract_se_ivreg()
Extract adjusted standard errors from ivreg model

Utilities

Helper functions for checking optional dependencies and Stata integration

has_curl()
Check if curl is available
has_haven()
Check if haven is available
has_rendo()
Check if REndo is available
has_rstata()
Check if RStata is available
has_stata()
Check if Stata is available via RStata
ensure_stata_packages()
Helper to ensure Stata packages are installed
get_stata_path()
Get the actual Stata executable path
hetid_opt()
Get hetid package options with fallback to constants