Skip to contents

Implementation of GMM estimation for Rigobon's (2003) heteroskedasticity-based identification strategy using regime changes.

Usage

rigobon_gmm(
  data,
  system = "triangular",
  y1_var = "Y1",
  y2_var = "Y2",
  x_vars = "Xk",
  regime_var = "regime",
  add_intercept = TRUE,
  gmm_type = "twoStep",
  vcov = .hetid_const("VCOV_HAC"),
  initial_values = NULL,
  verbose = TRUE,
  ...
)

Arguments

data

Data frame containing all variables.

system

Character. Either "triangular" (default) or "simultaneous". Note: Simultaneous systems require many regimes (4+) and large variance differences across regimes for numerical stability and identification.

y1_var

Character. Name of the first dependent variable.

y2_var

Character. Name of the second dependent variable.

x_vars

Character vector. Names of exogenous variables.

regime_var

Character. Name of the regime indicator variable.

add_intercept

Logical. Whether to add an intercept.

gmm_type

Character. GMM type.

vcov

Character. Variance-covariance matrix type.

initial_values

Numeric vector. Initial parameter values.

verbose

Logical. Whether to print progress messages (default: TRUE).

...

Additional arguments passed to gmm::gmm.

Value

An object of class "rigobon_gmm" containing GMM estimation results.

References

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics and Statistics, 85(4), 777-792.