
Define GMM Moment Conditions for Lewbel Triangular System
Source:R/lewbel-gmm.R
lewbel_triangular_moments.Rd
Creates the moment function for GMM estimation of a triangular system using Lewbel's heteroskedasticity-based identification.
Arguments
- theta
Numeric vector. Parameters to estimate: c(beta1, gamma1, beta2).
- data
Data frame containing all required variables. Must include the dependent variables and any exogenous regressors specified in the model.
- y1_var
Character. Name of the first dependent variable (default: "Y1").
- y2_var
Character. Name of the second dependent variable/endogenous regressor (default: "Y2").
- x_vars
Character vector. Names of exogenous variables (default: "Xk").
- z_vars
Character vector. Names of heteroskedasticity drivers (default: NULL, uses centered X).
- add_intercept
Logical. Whether to add an intercept to the exogenous variables.
Details
For the triangular system: $$Y_1 = X'\beta_1 + \gamma_1 Y_2 + \epsilon_1$$ $$Y_2 = X'\beta_2 + \epsilon_2$$
The moment conditions are:
\(E[X \times \epsilon_1] = 0\)
\(E[X \times \epsilon_2] = 0\)
\(E[Z \times \epsilon_1 \times \epsilon_2] = 0\)
where Z = g(X) is a mean-zero transformation of X.
References
Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126
See also
lewbel_gmm
for the main GMM estimation function.
lewbel_simultaneous_moments
for simultaneous system moments.