
Define GMM Moment Conditions for Lewbel Simultaneous System
Source:R/lewbel-gmm.R
lewbel_simultaneous_moments.Rd
Creates the moment function for GMM estimation of a simultaneous equations system using Lewbel's heteroskedasticity-based identification.
Usage
lewbel_simultaneous_moments(
theta,
data,
y1_var,
y2_var,
x_vars,
z_vars,
add_intercept,
z_sq
)
Arguments
- theta
Numeric vector. Parameters: c(beta1, gamma1, beta2, gamma2).
- data
Data frame containing all required variables. Must include the dependent variables and any exogenous regressors specified in the model.
- y1_var
Character. Name of the first dependent variable (default: "Y1").
- y2_var
Character. Name of the second dependent variable/endogenous regressor (default: "Y2").
- x_vars
Character vector. Names of exogenous variables (default: "Xk").
- z_vars
Character vector. Names of heteroskedasticity drivers (default: NULL).
- add_intercept
Logical. Whether to add an intercept to the exogenous variables.
- z_sq
Logical. Whether to include squared terms in the Z matrix for simultaneous equations.
Details
For the simultaneous system: $$Y_1 = X'\beta_1 + \gamma_1 Y_2 + \epsilon_1$$ $$Y_2 = X'\beta_2 + \gamma_2 Y_1 + \epsilon_2$$
The moment conditions are the same as the triangular system. Note: Requires gamma1 * gamma2 != 1 for identification.
References
Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126
See also
lewbel_gmm
for the main GMM estimation function.
lewbel_triangular_moments
for triangular system moments.