
Verify Lewbel's Key Identifying Assumptions
Source:R/data-generation.R
verify_lewbel_assumptions.Rd
Tests whether the data generating process satisfies the key assumptions required for Lewbel's (2012) identification strategy. This includes testing the covariance restriction and instrument relevance condition.
Usage
verify_lewbel_assumptions(
data = NULL,
config = NULL,
n_obs = 10000,
params = NULL,
verbose = TRUE
)
Arguments
- data
Data.frame. Optional. Pre-generated data to verify (alternative to n_obs/params).
- config
List. Optional. Configuration object (used with data parameter).
- n_obs
Integer. Sample size for verification (default: 10000, used with params).
- params
List. Parameters for the data generating process (same format as generate_lewbel_data).
- verbose
Logical. Whether to print progress messages (default: TRUE).
Details
The function tests:
Assumption A2: Cov(Z, \(\epsilon_1 \epsilon_2\)) = 0 (covariance restriction)
Assumption A3: Cov(Z, \(\epsilon_2^2\)) != 0 (instrument relevance)
Endogeneity: Cov(\(\epsilon_1\), \(\epsilon_2\)) != 0
Can be called in two ways:
verify_lewbel_assumptions(data, config) - using pre-generated data
verify_lewbel_assumptions(n_obs = 10000, params = params) - generating new data
References
Lewbel, A. (2012). Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. Journal of Business & Economic Statistics, 30(1), 67-80. doi:10.1080/07350015.2012.643126
See also
generate_lewbel_data
for generating data that meets assumptions
Examples
if (FALSE) { # \dontrun{
config <- create_default_config()
params <- list(
beta1_0 = config$beta1_0, beta1_1 = config$beta1_1, gamma1 = config$gamma1,
beta2_0 = config$beta2_0, beta2_1 = config$beta2_1,
alpha1 = config$alpha1, alpha2 = config$alpha2,
delta_het = config$delta_het
)
verify_lewbel_assumptions(params = params)
} # }