Skip to contents

Implementation of GMM estimation for Prono's (2014) heteroskedasticity-based identification strategy using GARCH models.

Usage

prono_gmm(
  data,
  system = "triangular",
  y1_var = "Y1",
  y2_var = "Y2",
  x_vars = NULL,
  garch_order = c(1, 1),
  fit_garch = TRUE,
  add_intercept = TRUE,
  gmm_type = "twoStep",
  vcov = .hetid_const("VCOV_HAC"),
  initial_values = NULL,
  compute_se = TRUE,
  verbose = TRUE,
  ...
)

Arguments

data

Data frame containing all variables.

system

Character. Either "triangular" (default).

y1_var

Character. Name of the first dependent variable (default: "Y1").

y2_var

Character. Name of the second dependent variable (default: "Y2").

x_vars

Character vector. Names of exogenous variables.

garch_order

GARCH(p,q) order (default: c(1,1)).

fit_garch

Logical. Whether to fit GARCH model (default: TRUE).

add_intercept

Logical. Whether to add an intercept (default: TRUE).

gmm_type

Character. GMM type: "onestep", "twoStep" (default), "iterative", or "cue".

vcov

Character. Variance-covariance matrix type: "iid", "HAC" (default), or "cluster".

initial_values

Numeric vector. Initial parameter values (optional).

compute_se

Logical. Whether to compute standard errors (default: TRUE).

verbose

Logical. Whether to print progress messages (default: TRUE).

...

Additional arguments passed to gmm::gmm.

Value

An object of class "prono_gmm" containing GMM estimation results.

References

Prono, T. (2014). The Role of Conditional Heteroskedasticity in Identifying and Estimating Linear Triangular Systems, with Applications to Asset Pricing Models That Include a Mismeasured Factor. Journal of Applied Econometrics, 29(5), 800-824. doi:10.1002/jae.2387

See also

prono_triangular_moments for moment conditions. run_single_prono_simulation for 2SLS estimation.